Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Divergent host plant utilization by adults and offspring is related to intra-plant variation in chemical defences.

Identifieur interne : 000A18 ( Main/Exploration ); précédent : 000A17; suivant : 000A19

Divergent host plant utilization by adults and offspring is related to intra-plant variation in chemical defences.

Auteurs : Charles J. Mason [États-Unis] ; David C. Long [États-Unis] ; Richard L. Lindroth [États-Unis] ; Kelli Hoover [États-Unis]

Source :

RBID : pubmed:31297794

Descripteurs français

English descriptors

Abstract

Adult and juvenile herbivores of the same species can use divergent feeding strategies, and thus may inhabit and consume different parts of the plant. Because the expression of chemical defences often differs between host plant tissues, this variation may result in disparate performance outcomes for adult and juvenile conspecifics that feed on distinct dietary substrates. The goal of this study was to evaluate how host range may differ between adults and juveniles in a generalist herbivore. We addressed the impacts of among- and within-plant defence variation using the wood-feeding Asian longhorned beetle (Anoplophora glabripennis) and three host plants having a range of putative resistance. Impacts of host plants on adult and offspring performance were assessed using a series of controlled bioassays. We evaluated adult-feeding and egg-laying behaviours in choice and no-choice experiments using the different hosts, and subsequent offspring establishment. We then evaluated host plant chemical composition related to nutrition and defence. Different plants had strong impacts on adult performance, but these patterns did not extend to effects on offspring. Females were capable of developing eggs when provided Acer rubrum, but not Populus deltoides or Populus tomentosa. Females that produced eggs by feeding on A. rubrum, however, deposited eggs into all three plant species. Larvae hatched and consumed tissues in all three hosts. The differences between adult and juvenile utilization of Populus spp. were reflected in markedly higher salicinoid phenolic concentrations in bark (>2% dw), while wood had trace quantities. Our results demonstrate that plant resistance mechanisms can differentially act upon adult and juvenile life stages of a polyphagous herbivore when there is differential expression of chemical defences among plant tissue types. Anoplophora glabripennis has been a globally successful invader due in part to its broad host range, and our results suggest a mechanism that permits the beetle to exploit marginally resistant plants. This study has implications for how host range differs between insect feeding stages, which is particularly important for invasive, polyphagous species encountering novel food sources.

DOI: 10.1111/1365-2656.13063
PubMed: 31297794


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Divergent host plant utilization by adults and offspring is related to intra-plant variation in chemical defences.</title>
<author>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Entomology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Long, David C" sort="Long, David C" uniqKey="Long D" first="David C" last="Long">David C. Long</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Entomology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Department of Entomology, University of Wisconsin-Madison, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hoover, Kelli" sort="Hoover, Kelli" uniqKey="Hoover K" first="Kelli" last="Hoover">Kelli Hoover</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Entomology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31297794</idno>
<idno type="pmid">31297794</idno>
<idno type="doi">10.1111/1365-2656.13063</idno>
<idno type="wicri:Area/Main/Corpus">000794</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000794</idno>
<idno type="wicri:Area/Main/Curation">000794</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000794</idno>
<idno type="wicri:Area/Main/Exploration">000794</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Divergent host plant utilization by adults and offspring is related to intra-plant variation in chemical defences.</title>
<author>
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Entomology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Long, David C" sort="Long, David C" uniqKey="Long D" first="David C" last="Long">David C. Long</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Entomology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
<wicri:cityArea>Department of Entomology, University of Wisconsin-Madison, Madison</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hoover, Kelli" sort="Hoover, Kelli" uniqKey="Hoover K" first="Kelli" last="Hoover">Kelli Hoover</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Entomology, The Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of animal ecology</title>
<idno type="eISSN">1365-2656</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Coleoptera (MeSH)</term>
<term>Female (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Introduced Species (MeSH)</term>
<term>Larva (MeSH)</term>
<term>Ovum (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Coléoptères (MeSH)</term>
<term>Espèce introduite (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Larve (MeSH)</term>
<term>Ovule (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Coleoptera</term>
<term>Female</term>
<term>Herbivory</term>
<term>Introduced Species</term>
<term>Larva</term>
<term>Ovum</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Coléoptères</term>
<term>Espèce introduite</term>
<term>Femelle</term>
<term>Herbivorie</term>
<term>Larve</term>
<term>Ovule</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adult and juvenile herbivores of the same species can use divergent feeding strategies, and thus may inhabit and consume different parts of the plant. Because the expression of chemical defences often differs between host plant tissues, this variation may result in disparate performance outcomes for adult and juvenile conspecifics that feed on distinct dietary substrates. The goal of this study was to evaluate how host range may differ between adults and juveniles in a generalist herbivore. We addressed the impacts of among- and within-plant defence variation using the wood-feeding Asian longhorned beetle (Anoplophora glabripennis) and three host plants having a range of putative resistance. Impacts of host plants on adult and offspring performance were assessed using a series of controlled bioassays. We evaluated adult-feeding and egg-laying behaviours in choice and no-choice experiments using the different hosts, and subsequent offspring establishment. We then evaluated host plant chemical composition related to nutrition and defence. Different plants had strong impacts on adult performance, but these patterns did not extend to effects on offspring. Females were capable of developing eggs when provided Acer rubrum, but not Populus deltoides or Populus tomentosa. Females that produced eggs by feeding on A. rubrum, however, deposited eggs into all three plant species. Larvae hatched and consumed tissues in all three hosts. The differences between adult and juvenile utilization of Populus spp. were reflected in markedly higher salicinoid phenolic concentrations in bark (>2% dw), while wood had trace quantities. Our results demonstrate that plant resistance mechanisms can differentially act upon adult and juvenile life stages of a polyphagous herbivore when there is differential expression of chemical defences among plant tissue types. Anoplophora glabripennis has been a globally successful invader due in part to its broad host range, and our results suggest a mechanism that permits the beetle to exploit marginally resistant plants. This study has implications for how host range differs between insect feeding stages, which is particularly important for invasive, polyphagous species encountering novel food sources.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31297794</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2656</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of animal ecology</Title>
<ISOAbbreviation>J Anim Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Divergent host plant utilization by adults and offspring is related to intra-plant variation in chemical defences.</ArticleTitle>
<Pagination>
<MedlinePgn>1789-1798</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1365-2656.13063</ELocationID>
<Abstract>
<AbstractText>Adult and juvenile herbivores of the same species can use divergent feeding strategies, and thus may inhabit and consume different parts of the plant. Because the expression of chemical defences often differs between host plant tissues, this variation may result in disparate performance outcomes for adult and juvenile conspecifics that feed on distinct dietary substrates. The goal of this study was to evaluate how host range may differ between adults and juveniles in a generalist herbivore. We addressed the impacts of among- and within-plant defence variation using the wood-feeding Asian longhorned beetle (Anoplophora glabripennis) and three host plants having a range of putative resistance. Impacts of host plants on adult and offspring performance were assessed using a series of controlled bioassays. We evaluated adult-feeding and egg-laying behaviours in choice and no-choice experiments using the different hosts, and subsequent offspring establishment. We then evaluated host plant chemical composition related to nutrition and defence. Different plants had strong impacts on adult performance, but these patterns did not extend to effects on offspring. Females were capable of developing eggs when provided Acer rubrum, but not Populus deltoides or Populus tomentosa. Females that produced eggs by feeding on A. rubrum, however, deposited eggs into all three plant species. Larvae hatched and consumed tissues in all three hosts. The differences between adult and juvenile utilization of Populus spp. were reflected in markedly higher salicinoid phenolic concentrations in bark (>2% dw), while wood had trace quantities. Our results demonstrate that plant resistance mechanisms can differentially act upon adult and juvenile life stages of a polyphagous herbivore when there is differential expression of chemical defences among plant tissue types. Anoplophora glabripennis has been a globally successful invader due in part to its broad host range, and our results suggest a mechanism that permits the beetle to exploit marginally resistant plants. This study has implications for how host range differs between insect feeding stages, which is particularly important for invasive, polyphagous species encountering novel food sources.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mason</LastName>
<ForeName>Charles J</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">0000-0002-9205-8511</Identifier>
<AffiliationInfo>
<Affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Long</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<Identifier Source="ORCID">0000-0003-4587-7255</Identifier>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoover</LastName>
<ForeName>Kelli</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-9888-585X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.g7n0k6n</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Anim Ecol</MedlineTA>
<NlmUniqueID>0376574</NlmUniqueID>
<ISSNLinking>0021-8790</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="Y">Coleoptera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058865" MajorTopicYN="N">Introduced Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010063" MajorTopicYN="Y">Ovum</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Asian longhorned beetle</Keyword>
<Keyword MajorTopicYN="Y">chemical defences</Keyword>
<Keyword MajorTopicYN="Y">invasive</Keyword>
<Keyword MajorTopicYN="Y">maple</Keyword>
<Keyword MajorTopicYN="Y">phenolic glycosides</Keyword>
<Keyword MajorTopicYN="Y">poplar</Keyword>
<Keyword MajorTopicYN="Y">salicinoids</Keyword>
<Keyword MajorTopicYN="Y">wood borer</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31297794</ArticleId>
<ArticleId IdType="doi">10.1111/1365-2656.13063</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abreu, I. N., Ahnlund, M., Moritz, T., & Albrectsen, B. R. (2011). UHPLC-ESI/TOFMS determination of salicylate-like phenolic gycosides in Populus tremula leaves. Journal of Chemical Ecology, 37(8), 857-870. https://doi.org/10.1007/s10886-011-9991-7</Citation>
</Reference>
<Reference>
<Citation>Agrawal, A. A., & Fishbein, M. (2006). Plant defense syndromes. Ecology, 87(7), 132-149. https://doi.org/10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2</Citation>
</Reference>
<Reference>
<Citation>Aide, T. (1993). Patterns of leaf development and herbivory in a tropical understory community. Ecology, 74(2), 455-466. https://doi.org/10.2307/1939307</Citation>
</Reference>
<Reference>
<Citation>Altermatt, F., & Pearse, I. S. (2011). Similarity and specialization of the larval versus adult diet of european butterflies and moths. The American Naturalist, 178(3), 372-382. https://doi.org/10.1086/661248</Citation>
</Reference>
<Reference>
<Citation>Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: A synthesis. Ecology Letters, 6(12), 1109-1122. https://doi.org/10.1046/j.1461-0248.2003.00530.x</Citation>
</Reference>
<Reference>
<Citation>Ayres, M. P., Clausen, T. P., Maclean, S. F., Redman, A. M., & Reichardt, P. B. (1997). Diversity of structure and antiherbivore activity in condensed tannins. Ecology, 78(786), 1696-1712. https://doi.org/10.1890/0012-9658(1997)078[1696:DOSAAA]2.0.CO;2</Citation>
</Reference>
<Reference>
<Citation>Barrett, L. G., & Heil, M. (2012). Unifying concepts and mechanisms in the specificity of plant - enemy interactions. Trends in Plant Science, 17(5), 282-292. https://doi.org/10.1016/j.tplants.2012.02.009</Citation>
</Reference>
<Reference>
<Citation>Behmer, S. (2009). Insect herbivore nutrient regulation. Annual Review of Entomology, 54, 167-187. https://doi.org/10.1146/annurev.ento.54.110807.090537</Citation>
</Reference>
<Reference>
<Citation>Boeckler, G. A., Gershenzon, J., & Unsicker, S. B. (2011). Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 72(13), 1497-1509. https://doi.org/10.1016/j.phytochem.2011.01.038</Citation>
</Reference>
<Reference>
<Citation>Brockerhoff, E. G., & Liebhold, A. M. (2017). Ecology of forest insect invasions. Biological Invasions, 19(11), 3141-3159. https://doi.org/10.1007/s10530-017-1514-1</Citation>
</Reference>
<Reference>
<Citation>Chow, P. S., & Landhäusser, S. M. (2004). A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology, 24(10), 1129-1136. https://doi.org/10.1093/treephys/24.10.1129</Citation>
</Reference>
<Reference>
<Citation>Clark, K. E., Hartley, S. E., & Johnson, S. N. (2011). Does mother know best? The preference-performance hypothesis and parent-offspring conflict in aboveground-belowground herbivore life cycles. Ecological Entomology, 36(2), 117-124. https://doi.org/10.1111/j.1365-2311.2010.01248.x</Citation>
</Reference>
<Reference>
<Citation>de Mendiburu, F. (2014). agricolae: Statistical procedures for agricultural research. Retrieved from http://cran.r-project.org/web/packages/agricolae/index.html</Citation>
</Reference>
<Reference>
<Citation>Donaldson, J. R., & Lindroth, R. L. (2004). Cottonwood leaf beetle (Coleoptera: Chrysomelidae) performance in relation to variable phytochemistry in juvenile aspen (Populus tremuloides Michx.). Environmental Entomology, 33(5), 1505-1511.</Citation>
</Reference>
<Reference>
<Citation>Farrell, B. D., Mitter, C., & Futuyma, D. J. (1992). Diversification at the insect-plant interface. BioScience, 42(1), 34-42. https://doi.org/10.2307/1311626</Citation>
</Reference>
<Reference>
<Citation>Fraedrich, S. W., Harrington, T. C., Rabaglia, R. J., Ulyshen, M. D., Mayfield, A. E., Hanula, J. L., … Miller, D. R. (2008). A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Disease, 92(2), 215-224. https://doi.org/10.1094/PDIS-92-2-0215</Citation>
</Reference>
<Reference>
<Citation>Friberg, M., Posledovich, D., & Wiklund, C. (2015). Decoupling of female host plant preference and offspring performance in relative specialist and generalist butterflies. Oecologia, 178(4), 1181-1192. https://doi.org/10.1007/s00442-015-3286-6</Citation>
</Reference>
<Reference>
<Citation>Futuyma, D. J., & Agrawal, A. A. (2009). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences, 106(43), 18054-18061. https://doi.org/10.1073/pnas.0904106106</Citation>
</Reference>
<Reference>
<Citation>Garcıa-Robledo, C., & Horvitz, C. C. (2011). Experimental demography and the vital rates of generalist and specialist insect herbivores on native and novel host plants. Journal of Animal Ecology, 80(5), 976-989. https://doi.org/10.1111/j.1365-2656.2011.01843.x</Citation>
</Reference>
<Reference>
<Citation>Garcia-Robledo, C., & Horvitz, C. C. (2012). Parent - offspring conflicts, “optimal bad motherhood” and the “mother knows best ” principles in insect herbivores colonizing novel host plants. Ecology and Evolution, 2(7), 1446-1457. https://doi.org/10.1002/ece3.267</Citation>
</Reference>
<Reference>
<Citation>Gershenzon, J. (1994). Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20(6), 1281-1328. https://doi.org/10.1007/BF02059810</Citation>
</Reference>
<Reference>
<Citation>Gripenberg, S., Mayhew, P. J., Parnell, M., & Roslin, T. (2010). A meta-analysis of preference-performance relationships in phytophagous insects. Ecology Letters, 13(3), 383-393. https://doi.org/10.1111/j.1461-0248.2009.01433.x</Citation>
</Reference>
<Reference>
<Citation>Haack, R. A., Hérard, F., Sun, J., & Turgeon, J. J. (2009). Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: A worldwide perspective. Annual Review of Entomology, 55(1), 521. https://doi.org/10.1146/annurev-ento-112408-085427</Citation>
</Reference>
<Reference>
<Citation>Hagerman, A. E., & Butler, L. G. (1980). Condensed tannin purification and characterization of tannin-associated proteins. Journal of Agricultural and Food Chemistry, 28(5), 947-952. https://doi.org/10.1021/jf60231a011</Citation>
</Reference>
<Reference>
<Citation>Handley, R., Ekbom, B., & Ågren, J. (2005). Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology, 30(3), 284-292. https://doi.org/10.1111/j.0307-6946.2005.00699.x</Citation>
</Reference>
<Reference>
<Citation>Herms, D. A., & McCullough, D. G. (2014). Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annual Review of Entomology, 59(1), 13-30. https://doi.org/10.1146/annurev-ento-011613-162051</Citation>
</Reference>
<Reference>
<Citation>Hu, J., Angeli, S., Schuetz, S., Luo, Y., & Hajek, A. E. (2009). Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agricultural and Forest Entomology, 11(4), 359-375.</Citation>
</Reference>
<Reference>
<Citation>Hufnagel, M., Schilmiller, A. L., Ali, J., & Szendrei, Z. (2017). Choosy mothers pick challenging plants: Maternal preference and larval performance of a specialist herbivore are not linked. Ecological Entomology, 42(1), 33-41. https://doi.org/10.1111/een.12350</Citation>
</Reference>
<Reference>
<Citation>Hwang, S.-Y., & Lindroth, R. L. (1997). Clonal variation in foliar chemistry of aspen: Effects on gypsy moths and forest tent caterpillars. Oecologia, 111(1), 99-108. https://doi.org/10.1007/s004420050213</Citation>
</Reference>
<Reference>
<Citation>Jiang, Z.-Y., Hunt, J. V., & Wolff, S. P. (1992). Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Analytical Biochemistry, 202(2), 384-389. https://doi.org/10.1016/0003-2697(92)90122-N</Citation>
</Reference>
<Reference>
<Citation>Kang-Jou, H. (1982). Forest entomology in China review-a general review. Crop Protection, 1(3), 359-367.</Citation>
</Reference>
<Reference>
<Citation>Keena, M. A. (2002). Anoplophora glabripennis (Coleoptera: Cerambycidae) fecundity and longevity under laboratory conditions: Comparison of populations from New York and Illinois on Acer saccharum. Environmental Entomology, 31, 490-498.</Citation>
</Reference>
<Reference>
<Citation>Keena, M. A. (2005). Pourable Artificial diet for rearing Anoplophora glabripennis (Coleoptera: Cerambycidae) and methods to optimize larval survival and synchronize development. Annals of the Entomological Society of America, 98(4), 536-547.</Citation>
</Reference>
<Reference>
<Citation>Keena, M., & Sanchez, V. (2006). Reproductive behaviors of Asian longhorned beetle. In V. Mastro, D. Lance, R. Reardon, & G. Parra (Eds.), Proceedings, emerald ash borer and Asian longhorned beetle research and technology development meeting (pp. 123-124). Cincinnati, OH: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team FHTET-2007-04.</Citation>
</Reference>
<Reference>
<Citation>Keith, R. A., & Mitchell-Olds, T. (2017). Testing the optimal defense hypothesis in nature: Variation for glucosinolate profiles within plants. PLoS One, 12(7), 1-17. https://doi.org/10.1371/journal.pone.0180971</Citation>
</Reference>
<Reference>
<Citation>Kursar, T. A., & Coley, P. D. (2003). Convergence in defense syndromes of young leaves in tropical rainforests. Biochemical Systematics and Ecology, 31(8), 929-949. https://doi.org/10.1016/S0305-1978(03)00087-5</Citation>
</Reference>
<Reference>
<Citation>Lee, G., Joo, Y., Diezel, C., Lee, E. J., Baldwin, I. T., & Kim, S. G. (2016). Trichobaris weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance. Molecular Ecology, 25(14), 3509-3519.</Citation>
</Reference>
<Reference>
<Citation>Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A.-G., …Stadtman, E. R. (1990). [49] Determination of carbonyl content in oxidatively modified proteins. In Methods in Enzymology (Vol. 186, pp. 464-478). Elsevier.</Citation>
</Reference>
<Reference>
<Citation>Liebhold, A. M., Brockerhoff, E. G., Kalisz, S., Nuñez, M. A., Wardle, D. A., & Wingfield, M. J. (2017). Biological invasions in forest ecosystems. Biological Invasions, 19(11), 3437-3458. d. https://doi.org/10.1007/s10530-017-1458-5</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R. L., Donaldson, J. R., Stevens, M. T., & Gusse, A. C. (2007). Browse quality in quaking Aspen (Populus tremuloides): Effects of genotype, nutrients, defoliation, and coppicing. Journal of Chemical Ecology, 33(5), 1049-1064. https://doi.org/10.1007/s10886-007-9281-6</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R. L., & Hemming, J. D. C. (1990). Responses of the gypsy moth (Lepidoptera: Lymantriidae) to tremulacin, an aspen phenolic glycoside. Environmental Entomology, 19, 842-847. https://doi.org/10.1093/ee/19.4.842</Citation>
</Reference>
<Reference>
<Citation>Lindroth, R. L., & St. Clair, S. B. (2013). Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. Forest Ecology and Management, 299, 14-21. https://doi.org/10.1016/j.foreco.2012.11.018</Citation>
</Reference>
<Reference>
<Citation>Ludwig, S., Laura, L., McCullough, D., Hoover, K., Montero, S., & Sellmer, J. (2002). Methods to evaluate host tree suitability to the Asian longhorned beetle, Anoplophora glabripennis. Journal of Environmental Horticulture, 20, 175-180.</Citation>
</Reference>
<Reference>
<Citation>Mason, C. J., Long, D. C., Lindroth, R. L., & Hoover, K. (2019). Data from: Divergent host plant utilization by adult and offspring is related to intra-plant variation in chemical defences. Dryad Digital Repository, https://doi.org/10.5061/dryad.g7n0k6n</Citation>
</Reference>
<Reference>
<Citation>Mason, C. J., Long, D. C., McCarthy, E. M., Nagachar, N., Rosa, C., Scully, E. D., … Hoover, K. (2017). Within gut physicochemical variation does not correspond to distinct resident fungal and bacterial communities in the tree-killing xylophage, Anoplophora glabripennis. Journal of Insect Physiology, 102, 27-35. https://doi.org/10.1016/j.jinsphys.2017.08.003</Citation>
</Reference>
<Reference>
<Citation>McCall, A. C., & Fordyce, J. A. (2010). Can optimal defence theory be used to predict the distribution of plant chemical defences? Journal of Ecology, 98(5), 985-992. https://doi.org/10.1111/j.1365-2745.2010.01693.x</Citation>
</Reference>
<Reference>
<Citation>McKenna, D. D., Scully, E. D., Pauchet, Y., Hoover, K., Kirsch, R., Geib, S. M., … Richards, S. (2016). Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biology, 17(1), 227. https://doi.org/10.1186/s13059-016-1088-8</Citation>
</Reference>
<Reference>
<Citation>Meldau, S., Erb, M., & Baldwin, I. T. (2012). Defence on demand: Mechanisms behind optimal defence patterns. Annals of Botany, 110(8), 1503-1514. https://doi.org/10.1093/aob/mcs212</Citation>
</Reference>
<Reference>
<Citation>Meng, P. S., Hoover, K., & Keena, M. A. (2015). Asian Longhorned beetle (coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe. Journal of Integrated Pest Management, 6(1), 4. https://doi.org/10.1093/jipm/pmv003</Citation>
</Reference>
<Reference>
<Citation>Meyer, K. D., & Paul, V. J. (1992). Intraplant variation in secondary metabolite concentration in three species of Caulerpa (Chlorophyta: Caulerpales) and its effects on herbivorous fishes. Marine Ecology Progress Series, 82, 249-257. https://doi.org/10.3354/meps082249</Citation>
</Reference>
<Reference>
<Citation>Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, 63, 431-450. https://doi.org/10.1146/annurev-arplant-042110-103854</Citation>
</Reference>
<Reference>
<Citation>Porter, L., Hrstich, L., & Chan, B. (1986). The converstion of procyanidins and propelphinidins to cyanidin and delphinidin. Phytochemistry, 2, 223-230.</Citation>
</Reference>
<Reference>
<Citation>R Team (2015). RStudio: Integrated development for R. Boston, MA: RStudio Inc. http://www.rstudio.com</Citation>
</Reference>
<Reference>
<Citation>Raffa, K. F., Aukema, B. H., Erbilgin, N., Klepzig, K. D., & Wallin, K. F. (2005). Interactions among conifer terpenoids and bark beetles across multiple levels of scale: An attempt to understand links between population patterns and physiological processes. In T. R. John (Ed.), Recent Advances in Phytochemistry (pp. 79-118). Kidlington, UK: Elsevier.</Citation>
</Reference>
<Reference>
<Citation>Rui, W., Guansheng, J., & Xixiang, Q. (1995). Study on the chemicals in bark of Populus tomentosa Carr. resistant to Anoplophora glabripennis Motsh. Scientia Silvae Sinicae, 31, 185-188.</Citation>
</Reference>
<Reference>
<Citation>Scheirs, J., Bruyn, L. D., & Verhagen, R. (2000). Optimization of adult performance determines host choice in a grass miner. Proceedings of the Royal Society B: Biological Sciences, 267(1457), 2065-2069.</Citation>
</Reference>
<Reference>
<Citation>Scheirs, J., Zoebisch, T. G., Schuster, D. J., & De Bruyn, L. (2004). Optimal foraging shapes host preference of a polyphagous leafminer. Ecological Entomology, 29, 375-379. https://doi.org/10.1111/j.0307-6946.2004.00600.x</Citation>
</Reference>
<Reference>
<Citation>Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089</Citation>
</Reference>
<Reference>
<Citation>Schuman, M. C., & Baldwin, I. T. (2016). The layers of plant responses to insect herbivores. Annual Review of Entomology, 61, 373-394. https://doi.org/10.1146/annurev-ento-010715-023851</Citation>
</Reference>
<Reference>
<Citation>Smith, G. P., Johnson, C. A., Davidowitz, G., & Bronstein, J. L. (2018). Linkages between nectaring and oviposition preferences of Manduca sexta on two co-blooming Datura species in the Sonoran Desert. Ecological Entomology, 43(1), 85-92.</Citation>
</Reference>
<Reference>
<Citation>Stockhoff, B. A. (1993). Ontogenetic change in dietary selection for protein and lipid by gypsy moth larvae. Journal of Insect Physiology, 39(8), 677-686. https://doi.org/10.1016/0022-1910(93)90073-Z</Citation>
</Reference>
<Reference>
<Citation>Summers, C. B., & Felton, G. W. (1994). Prooxidant effects of phenolic acids on the generalist herbivore. Journal of Chemical Ecology, 24(9), 943-953.</Citation>
</Reference>
<Reference>
<Citation>Unsicker, S. B., Oswald, A., Köhler, G., & Weisser, W. W. (2008). Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologi, 156(2), 313-324. https://doi.org/10.1007/s00442-008-0973-6</Citation>
</Reference>
<Reference>
<Citation>Weilun, Y., & Wen, L. (2005). Review of the tree selection and afforestation for control of Asian longhorned beetle in north China. Rome, Italy: FAO.</Citation>
</Reference>
<Reference>
<Citation>Wurst, S., Van Dam, N. M., Monroy, F., Biere, A., & Van Der Putten, W. H. (2008). Intraspecific variation in plant defense alters effects of root herbivores on leaf chemistry and aboveground herbivore damage. Journal of Chemical Ecology, 34(10), 1360-1367. https://doi.org/10.1007/s10886-008-9537-9</Citation>
</Reference>
<Reference>
<Citation>Yan, J., & Qin, X. (1992). Anoplophora glabripennsi (Motsch.). In G. Xiao (Ed.), Forest insects of china (pp. 455-477). Beijing, China: https://doi.org/10.1673/031.009.2101</Citation>
</Reference>
<Reference>
<Citation>Yang, P. H. (2005). Review of the Asian longhorned beetle research, biology, distribution and management in China (Vol. 3). Rome, Italy: FAO.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Mason, Charles J" sort="Mason, Charles J" uniqKey="Mason C" first="Charles J" last="Mason">Charles J. Mason</name>
</region>
<name sortKey="Hoover, Kelli" sort="Hoover, Kelli" uniqKey="Hoover K" first="Kelli" last="Hoover">Kelli Hoover</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Long, David C" sort="Long, David C" uniqKey="Long D" first="David C" last="Long">David C. Long</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31297794
   |texte=   Divergent host plant utilization by adults and offspring is related to intra-plant variation in chemical defences.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31297794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020